Предисловие

Эта небольшая книга посвящена промышленной обработке древесины и продуктов ее переработки разнообразными методами и материалами, например, лакокрасочными и декоративными пленками. Выбор методов и материалов осуществляется с учетом условий эксплуатации изделий — внутри помещения или снаружи. В основу анализа легла рыночная информация.

Издание адресовано всем профессионалам, занимающимся производством и окраской продукции из древесины и древесных материалов, в том числе учащимся профессиональных колледжей, студентам, инженерам, производителям оборудования, изготовителям сырья, красок, окон, мебели, паркета, дверей и т. д. В книге представлен обширный обзор, посвященный химии и технологии систем лакокрасочных покрытий для древесины. В конце каждой главы для заинтересованных читателей предлагается список литературы.

Книга начинается с краткого исторического обзора применения лакокрасочных материалов для древесины и введения в технологию древесины и древесных материалов. Наряду с классическими лакокрасочными системами, содержащими растворитель, в книге рассмотрены также современные лакокрасочные материалы: УФ-отверждаемые, водные, а также порошковые системы лакокрасочных покрытий со всеми их достоинствами и недостатками. Подробно описываются стандартные рецептуры материалов и применяемые на практике технологические процессы различных методов нанесения покрытий для древесины и древесных материалов.

В книге также обсуждаются системы современных лакокрасочных покрытий для окраски окон с анализом их основных свойств и технологий нанесения, а также детально рассматриваются технологии декорирования изделий из древесины и древесных материалов с применением бумажных пленок и оценка экономической эффективности подобных технологий.

Повышенное внимание уделено вопросам экологической безопасности для разных методов нанесения лакокрасочных материалов, в том числе при нанесении покрытия в вакууме, вальцевании и т.п., а также проблемам рекуперации отходов производства.

Книга заканчивается рассуждениями о перспективных направлениях в развитии промышленных методов нанесения покрытий и разработке новых лакокрасочных и пленочных материалов для защитно-декоративной отделки древесины. Связь теоретических основ нанесения защитно-декоративных материалов для древесины с практикой предоставляет читателю конкретную помощь при решении различных задач защитно-декоративной отделки древесины. Из-за обширности темы авторы не претендуют на полноту ее освещения.

Авторы хотели бы поблагодарить всех сотрудников и коллег, которые при работе с книгой внесли ряд ценных рекомендаций, предоставили большое количество литературных данных и были всегда готовы к доброжелательной дискуссии. За многочисленные инициативы, подсказки, предоставленые рисунки и данные, а также за просмотр авторской рукописи благодарим проф. Гельмута Бауха, д-ра Роланда Баумштарка, д-ра Марио Бейера, Михаэла Кобека, д-ра-инженера Рико Эммлера, Петера Эненкеля, д-ра Штефана Фрибеля, д-ра Йозефа Тео Хайна, дипломированного инженера Ингрид Хойссен, д-ра Кристофа Ирле, дипломированных инженеров Йорга Каспера, Райнера Коха,

Глава 2. Древесина и древесные материалы

2.1. Введение

150 лет тому назад доминирующим материалом в Германии и Европе, наряду с природным камнем, была древесина. Для Скандинавии, Канады, США и многих других стран такое положение сохранилось до сих пор. Однако в период индустриализации древесина в Центральной Европе во многом потеряла свое значение. Стандартизация производств и повышение их производительности и мощности возможно только при стабильном качестве используемой древесины, что оказалось экономически невозможным. Поэтому стали развиваться другие древесные материалы с однородными и новыми свойствами, благодаря которым стала открыта любая область применения [1–4].

Природный органический материал древесина разрушается под воздействием окружающей среды и микроорганизмов и таким образом снова включается в кругооборот веществ в виде своих основных составных частей. Чтобы защитить ее от воздействия воды и вредных веществ и тем самым от разрушения, а также чтобы придать ей декоративный внешний вид, древесина заблаговременно подвергалась обработке. Обработка поверхности древесины и древесных материалов при использовании строительных материалов из древесины по-прежнему играет выдающуюся роль. Древесина, однако, в противоположность другим материалам, имеет специфические свойства, которые влияют на обработку поверхности и знание которых необходимо при разработке рецептуры покрытий для древесины, разработке методов обработки и т.д. [5–8].

2.2. Микроскопическая структура дерева

Дерево — пористый природный композиционный материал. Пористая структура способствует, с одной стороны, хорошему проникновению жидкостей, например, впитыванию ЛКМ в поверхность древесины, а с другой, требует специального подхода, например, при нанесении покрытия на крупнопористую поверхность.

Историческое развитие хвойных пород началось раньше, чем лиственных, и структура их проще. На *рис. 2.1* схематически показана структура пород древесины и существенное различие между хвойной и лиственной породами.

Древесину лиственных пород можно отличить от хвойных в общем и целом по неравномерной и разнообразной структуре. Лиственная древесина имеет сосуды, которые выглядят на макроскопической картине, как поры. Приблизительно ориентированные по оси ствола дерева сосуды могут образовывать трубки, бороздки длиной несколько метров. Сосуды, разрезанные в продольном направлении, более или менее четко можно разглядеть, как упомянутые бороздки из пор. При этом разли чают кольцесосудистую, рассеяннососудистую и полукольцесосудистую древесину.

Пористость имеет большое значение для многих процессов переработки и использования древесины, таких как пластификация, нанесение покрытия, склеивание, пропитка [9]. Сильнопористая древесина обладает незначительной прочностью на сжатие и растяжение, и поэтому деформируется при прессовании, шлифовании и полировании, а также склонна к растрескиванию, в особенности там, где большие сосуды подходят вплотную к поверхности. Надрезанные сосуды (поры), которые вследствие их узкого поперечного се-

Таблица 2.8. Значения рН некоторых древесных пород и влияние их компонентов на покрытие (*Источник*: [5])

· · · · · · · · · · · · · · · · · · ·				
Древесные породы	Значение рН	Тип и действие ингредиента на покрытие		
Лиственные				
Афромозия	4,5	Замедление отверждения, обесцвечивание Пк, коррозия металла при контакте с древесиной		
Афзелия	4,9	Замедление отверждения, обесцвечивание Пк		
Ироко	6,4	Компоненты, наносящие вред полиэфирным лакам		
Клен	5,1	Опасность обесцвечивания покрытия		
Береза	4,8	Образование неактивного поверхностного слоя за счет жирных веществ		
Бук	5,4	Хорошие способности к морению и лакированию		
Дуб	3,8	Содержит дубильную кислоту, обесцвечивающее действие, синее окрашивание при контакте с металлом (Fe)		
Фрамира	4,1	Содержит дубильную кислоту, обесцвечивающее действие, потемнение при контакте с металлом (Fe)		
Мербау	4,3	Обесцвечивание покрытия		
Мансония	4,3-6,2	Содержит вещества, ингибирующие отверждение полиэфирных лаков		
Сипо	6	Замедление отверждения, обесцвечивание Пк		
Тик	5,1	Часто появление матового налета на покрытии		
Хвойные				
Сосна	5,1	Риск выделения смол при повышении температуры за счет повышенной смолистости		
Ель	5,3	Возможно незначительное выделение смол		
Лиственница	4,3	Риск выделения смол за счет повышенной смолистости, иногда обесцвечивание покрытия		
Дугласия	3,5	Риск выделения смол, обесцвечивание покрытия		
Смолистая сосна	3,5	Риск выделения смол за счет повышенной смолистости		

- подвержена деструкции и может разрушаться грибками, насекомыми и микроорганизмами;
- обладает гигроскопичностью (способна поглощать влагу или ее отдавать и вследствие этого разбухать или усыхать);
- обладает горючестью.

Исходя из вышесказанного, из-за недостаточной природной устойчивости древесина при наружном применении должна быть защищена конструктивно. Для несущих конструкций и придающих жесткость элементов эти меры обобщены в части 2 DIN 68800¹. Дополнительно может потребоваться защита от ат-

¹ DIN 68800: Распределение по классам опасности.

оно должно проводиться поперек предыдущего направления шлифовки. Тогда последующая полировка может быть сделана быстро и с незначительным усилием прижима. Полировка до высокой степени глянца выполняется на полировальной машине, которая снабжена войлочной лентой. Здесь используют специальные полировальные пасты и воски. Остатки воска снимают специальным полировочным средством. Лаковые покрытия в зависимости от температурной устойчивости, должны полировать со скоростью прохода абразива от 6 до 24 м/с [20]. При полировании должен быть минимизирован сильный нагрев покрытия, так как впоследствии это может привести к дефекту типа «апельсиновой корки». На практике температура поверхности при обработке на полировальном круге может быть от 80 до 100°С.

При использовании ПЭ-материалов должны приниматься во внимание следующие технологические рекомендации:

- оптимальная температура нанесения 23-28°C;
- сильно охлажденный ЛКМ предварительно нагревают до 30°C, затем охлаждают до 22–23°C и затем сразу используют;
- необходимо учесть, что растворы парафинов склонны к кристаллизации при хранении. Закристаллизованные парафиновые растворы нагревают при перемешивании (на водяной бане при температуре от 30 до 45°С) до полного растворения;
- следует строго соблюдать соотношения смешиваемых компонентов основы, отвердителя и ускорителя;
- время для использования материала после смешивания компонентов (время гелеобразования может быть увеличено до одного часа при использовании замедлителей; высокая температура и низкая относительная влажность воздуха сокращают время гелеобразования;
- соблюдение условий подачи сырой массы наносимого вещества. Увеличение массы наносимого вещества при распылении может привести к возникновению воздушных включений и, при известных условиях, к появлению серого оттенка. Уменьшение массы ведет к быстрому физическому высыханию и сокращению времени гелеобразования, а в парафинсодержащих системах задерживает всплывание парафина;
- налив на горячие поверхности приводит к образованию дефектов парафинсодержащих покрытий (выбоинам, растрескиванию, прилипанию);
- для достижения оптимального высокоглянцевого результата полировка должна быть сделана через 48–72 часа после отверждения.

Метод реакционного литьевого формования¹⁶

В последние годы много занимаются альтернативными системами покрытий, которые позволяют заменить многослойный, требующий много времени

¹⁵ Гелеобразование (продолжительность гелеобразования, точка гелеобразования). На практике это время, которое остается переработчику для нанесения нового слоя материала. С молекулярной точки зрения, согласно Flory [28], система достигает точки гелеобразования, когда образуется первичная бесконечная молекулярная сеть. Это означает, что молекулы из конца в конец непрерывно связаны между собой, но не все молекулы участвуют в этих связях.

¹⁶ RIM— Reaction Injection Molding — реакция литьевого формования. Две или несколько реакционно способных жидкостей подаются под высоким давлением в форму, где при повышенных температурах происходит отверждение. Это единственный метод переработки пластмасс, при котором химическая реакция происходит в пресс-форме.

Продолжение таблицы 3.1.33.

Компонент	Назначение	Массовая доля
Ацетобутират целлюлозы⁵ 20%-ный раствор в бутилацетате	Улучшение розлива	1,0
Всего		100,00

Время истечения (4 мм, при 23°C): около 90-120 с.

Скорость УФ-отверждения (130 г/м 2): около 2,0 м/мин.

- 1 минута облучения лампой низкого давления типа Philips TL 03.
- 1 УФ-облучатель (Hq) 120 Вт/см.
- ¹ Laromer® PO 84 F, форма выпуска 100%.
- ² Talkum AT 1 (Norwegian Talc AS).
- ³ Lucerin® TPO (BASF AG).
- ⁴ Darocur® 1173 (Ciba Specialty Chemicals Inc.).
- ⁵ CAB 551-0.01 (Eastman).

Таблица 3.1.34. Рецептура шелковисто-матового УФ-отверждаемого лака для мебели и дверей, наносимого вальцами [145]

Компонент	Назначение	Массовая доля
Сложный полиэфир-акрилат ¹	УФ-пленкообразователь с высокой эластичностью, устойчивость к истиранию и высокое наполнение	44,70
Трипропиленгликольдиакрилат (ТПГДА)	Активный разбавитель, регулирование вязкости	38,00
Бензофенон	Фотоинициатор	2,0
2-гидрокси-2-метил-1-фенил- припан-1-он²	Фотоинициатор	2,0
Кремниевая кислота ³ (синтетическая, обработанная органикой)	Регулирование степени блеска и вязкости	7,00
Тальк ⁴ (гидросиликат магния)	Наполнитель для улучшения адгезии и шлифуемости	4,00
Мелкодисперсный модифи- цированный полиэтиленовый воск⁵	Улучшение устойчивочти к царапанию, гладкости и понижение степени блеска	2,00
Модифицированный поли- эфиром полидиметилсилоксан ⁶ (10%-ный раствор в ксилоле)	Средство для улучшения розлива и гладкости	0,30
Всего		100,00

Вязкость(ISO 3219/23°C, конус-диск, D 2500 c^{-1}) = ca. 1100 мПа x с.

Количество наносимого вещества: 10-20 г/м².

УФ-отверждение: 2 УФ-облучателя (Hg) 80 Вт/см, 10 м/мин.

- ¹ Viaktin VTE 6174, форма выпуска 100 % (Cytec).
- ² Darocur®1173 (Ciba Specialty Chemicals Inc.).
- ³ Talkum A 10 (Naintsch).
- ⁴ Syloid® ED 50 (Grace).
- ⁵ Ceraflour® 950 (Byk).
- ⁶ Baysilon PL (Borchers).

Рис. 3.1.95. Структура высокомолекулярной акрилатно-полиуретановой дисперсии

чательно химически связывается под действием УФ-излучения. Этот процесс происходит в течение нескольких секунд после выпаривания воды.

Прочие полимерные дисперсии

Для внедрения в водные 2К-полиуретановые и отделочные материалы (см. ч. 3.1.10) используются карбоксилсодержащие, насыщенные, нейтрализованные аминами полиэфиры. Эти низкомолекулярные гидроксилсодержащие пленкообразователи после нейтрализации аминами (например, аминометилпропанолом, диметилэтаноламином) образуют коллоидные водные растворы, которые используются, например, совместно с меламиновыми или карбамидными смолами в рецептурах горячей сушки для бумажных пленок. Другим направлением является введение этих пленкообразующих в водные 2К-полиуретановые материалы в сочетании с подходящими полиизоцианатами. Также карбоксилсодержащие полиакрилаты с молекулярной массой от 50 000 до 150 000 и кислотным числом от 40 до 80 после получения частично нейтрализуются аминами и при растворении в воде образуют так называемые вторичные дисперсии с размером частиц от 20 до 200 нм [2, 4]. Растворенные таким образом вторичные дисперсии благодаря наличию гидроксильных групп могут взаимодействовать, например, с некоторыми полиизоцианатами.

Отвердители и активные разбавители

Типичными отвердителями для химической сшивки карбоксил- и гидроксил-содержащих дисперсий, используемых для обработки древесины и древесных материалов внутри помещений, являются:

- полиизоцианаты;
- азиридины;
- силаны.

Полиизоцианаты

К концу 1980-х гг. впервые удалось использовать водорастворимый 2Кполиуретановый ЛКМ в промышленном масштабе. Как уже было показано Отто Байером в 1943 г., при взаимодействии алифатических диизоцианатов с гидросульфитом натрия можно получить продукт, пригодный для использования в водных системах [17]. Использование этого процесса в технике покрытий долго не могло быть реализовано, так как полиизоцианаты реагируют с водой жде всего то, что для плавления и отверждения обычных порошковых материалов на тот момент была необходима температура выше 140°C. Недостаточная электропроводность древесины и древесных материалов, образование пузырей на покрытии при испарении воды и недостаточность декоративных свойств порошковых покрытий стали причиной задержки в коммерческом использовании порошковой техники в деревообрабатывающей промышленности. Научные исследования и технические разработки производителей сырья, ЛКМ и технических средств для нанесения покрытий помогли создать условия для внедрения этой новой технологии. Инновационное сотрудничество производителей мебели и ЛКМ всегда было и остается необходимым условием для ускорения внедрения порошковой технологии в этом секторе производства. Тесная совместная работа всех участников процесса при внедрении новых технологий особенно важна в случае разработки и внедрения порошковой технологии для обработки древесных материалов.

Между тем в мире существует уже больше 70 установок (включая опытные установки) для порошковой окраски [12], причем палитра окрашиваемых продуктов весьма разнообразна. Она охватывает элементы мебели для радио- и телеаппаратуры, офисной мебели, в особенности столешницы и ящики письменных столов, мебель для магазинов и операционных залов, кухонную, детскую и садовую мебель. Фирма Stilexo в Уэльсе первой применила еще термореактивные порошковые материалы и создала первую установку для окраски мебели под аудио- и видеотехнику в 1999 г. [13-16].

Ускорению развития порошковых технологий для деревообрабатывающей промышленности послужил постоянный рост производства MDF-материалов. Несмотря на противостоящие этому росту экономические трудности, возникшие в последние годы в мебельной промышленности и строительстве, техника порошковых покрытий может завоевать здесь новый сегмент рынка. Новые требования к дизайну, особенно офисной мебели, делают это возможным. Конструктивные особенности деревянных поверхностей, например, узкие профильные поверхности, углубления и пропилы в плитах, требуют не только способности к глубокой фрезеровке материала MDF-плит, но и соответствующей технологии окраски. Порошковые материалы благодаря своим преимуществам могут быть подходящей по цене альтернативой, которая обеспечит качество, необходимое покупателю. Хотя с середины 2002 г. [17–20] в Германии уже действует первая установка для порошковой окраски MDF-плит, многие отечественные потребители относятся к этой технологии скептически. В Европе и Германии планируют создание некоторых установок. С одной стороны, препятствием для инвестиций со стороны мебельной промышленности является напряженное состояние экономики, возникшее в начале столетия, а с другой - существующие до сих пор некоторые технические трудности в процессе нанесения порошковых покрытий. Все это побуждает руководителей производства к определенной сдержанности.

3.1.9.2. Порошковые ЛКМ

Согласно DIN 55945, порошковые ЛКМ — это системы, которые после нанесения и оплавления образуют на подложке лакокрасочное покрытие. Различают термореактивные и термопластичные порошковые материалы, причем для обработки древесины и древесных материалов интерес представляют только термореактивные системы. Кроме химического состава, важнейшей харакИнсектициды добавляются только в особых случаях. При обычных защитных грунтованиях древесины строительных элементов, таких как окна или обшивка досками, они, как правило, не применяются.

Светостабилизаторы и защита от УФ-излучения

Лигнин, содержащийся в древесине, а также целлюлозы, под действием УФ-части солнечного света подвергаются вредному воздействию и разрушаются (деполимеризуются). При этом светлые древесные породы темнеют, подвергаясь деструкции. Особенно проблематичным растрескивание и посерение (появление серого оттенка) из-за вымывания водорастворимых продуктов распада лигнина.

Лигнин имеет максимум абсорбции в УФ-области около 280 нм, целлюлозы, гемицеллюлозы и компоненты древесины поглощают ниже 200 нм, однако, как и другие компоненты древесины, имеют дополнительное поглощение около 400 нм. Поэтому влияние УФ-защитного фильтра лазури для древесины очень важно. Чем тоньше слой лазури, тем выше должно быть содержание в нем УФ-абсорбирующих компонентов. Это особенно справедливо для бесцветных лазурей.

Алкидные смолы обладают определенным поглощающим действием. Акрилаты практически полностью проницаемы для УФ-излучения. Чтобы придать очень светлым или непигментированным лазурям на основе акрилатных дисперсий достаточное УФ-защитное действие, добавляют УФ-абсорберы (например бензотриазолы), частично комбинированные со стерически затрудненными аминами, так называемыми HALS-соединениями² [33]. Частично добавляются также УФ-абсорбирующие наночастицы диоксида титана или окиси цинка.

HALS-соединения в первую очередь должны замедлять радикальный фотоокислительный распад лигнина. Количество используемого УФ-абсорбера при этом нужно выбирать таким образом, чтобы поглощались около 95% УФизлучения. В случае непигментированных или светлых лазурей добавляют, как правило, 1–3 масс. % в пересчете на общую рецептуру. Тем самым создается хороший компромисс между стоимостью и результатом.

Прочие добавки

Водные ЛКМ на основе алкидных смол содержат, как правило, сиккативы, настроенные на водные системы, и средства, препятствующие образованию пленки при хранении. Химическая основа соответствует при этом сиккативам, применяемым для алкидных смол, содержащих растворители, и средствам, препятствующим образованию пленки (см. гл. 3.2.1.4). Покрывные ЛКМ содержат добавки восковых эмульсий (с тонким распределением частиц или наночастицами) или специальных силиконов для гидрофобизации, улучшения стойкости к слипанию и царапанию или достижения специальных поверхностных эффектов (водонепроницаемости, или эффекта «лотоса» (Lotus Effekte). Для улучшения смачивания древесины водными ЛКМ они содержат чаще всего еще и специальные смачиватели.

3.2.3. Задачи и функция лакокрасочных покрытий для древесины для наружного применения

Достаточная физическая защита древесины может быть достигнута путем полупрозрачных пигментированных, УФ-абсорбирующих или кроющих лако-

² HALS – Hindered Amine Light Stabilizers; например тетраалкилзамещенные пиперидины.

Летучие ингредиенты древесины	Летучие вещества, образующиеся при обработке древесины
Монотерпены: α-пинен	Альдегиды: Формальдегид
β-пинен	Ацетальдегид
3-карен	Пропаналь
лимонен	Пентаналь
β–фелландрен	Гексаналь
γ–терпинен	Гептаналь
р-цимен	Октаналь
терпинолен	Нонаналь
β-мирцен	Аурфураль
	Кислоты: Муравьиная
	Уксусная

Таблица 9.9. Летучие компоненты древесины и древесных материалов

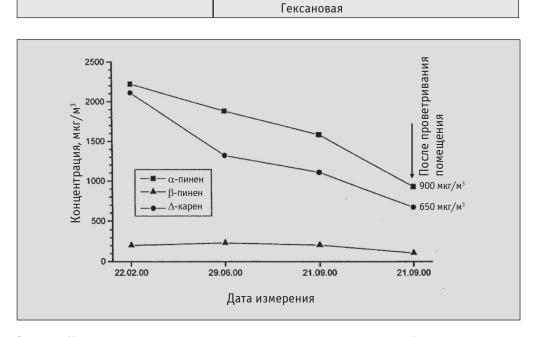


Рис. 9.8. Концентрация терпенов в школьном здании с паркетом из хвойных пород

Вещества, для которых в настоящее время не установлена токсикологическая оценка, т.е. нет NIK-классификации, ограничиваются по своим допустимым концентрациям. Для более подробного ознакомления с AgBB-схемой следует обратиться к приведенной литературе [21, 22].